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Micromechanics of multiple cracking
Part II Statistical tensile behaviour
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A computational model for fibre-reinforced brittle materials in tension is developed. The
model includes multiple cracking and strain-hardening processes, as well as single fracture
and strain softening. The composite behaviour is derived from a single-fibre analysis by
integrating over all possible fibre locations and orientations. The single-fibre analysis is
based on symmetry fibres satisfying the equilibrium condition. The result is a complete
constitutive relation: stress–strain or stress–crack width curve, and a prediction of crack
spacing. The model is an extension of the ACK theory by Aveston, Cooper and Kelly, as it can
be used with discontinuous fibres with different distributions, as well as for analysing hybrid
composites. Fibre orientation introduces additional phenomena, which are taken into
account with simple models. It was seen that matrix spalling at the fibre exit point may have
a considerable effect on the composite strain and the crack width. The effect of fibre aspect
ratio on the failure mode was studied, and it was found that with an intermediate fibre
diameter the composite fails by fibre pull-out in a multiple-cracking stage, resulting in
a strain-hardening material with a high ductility. The proposed model was verified against
experimental results of a strain-hardening material, called an engineered cementitious
composite. The model can be used in tailoring new materials to meet certain requirements,
or in studying the effects of micromechanical properties on the composite behaviour,
including the crack width, crack spacing, post-cracking strength, ultimate strain, and
ductility. The derived constitutive relationship can further be used in finite element analyses
defining the behaviour perpendicular to the crack.  1998 Kluwer Academic Publishers
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1. Introduction
The analysis of fibre-reinforced brittle materials, start-
ing from the micromechanical material properties and
leading to the finite element analysis of structures with
complex geometries and loadings, falls roughly into
three parts. First, the crack bridging analysis of
a single fibre can be evaluated using the micro-
mechanical material properties, which include the
properties of the fibres, the matrix, and the interface.
This theory has been developed and reported in Part
I [1]. The second step is to perform a statistical analy-
sis of all fibres with different locations and orienta-
tions, or different fibre types (hybrid) to obtain the
macromechanical tensile behaviour. This step is im-
portant in the design or tailoring of new materials
with high performance and low costs. The objective of
the present work is to perform this second step. The
results of the statistical uniaxial model can be used at
the third step by incorporating the computed non-
linear constitutive behaviour into finite element ana-
lyses, representing the stress—strain relation normal to
the cracks.

The objective of this study was to develop a fairly
general model, which includes both a single fracture
and multiple cracking. If the crack spacing is higher
than the fibre length, the stress—crack width relation
represents a single fracture. Fibre orientation intro-
duces additional phenomena, which include different
fibre distributions, snubbing effect, and matrix spall-
ing. Both these and hybrid composites are discussed,
and are taken into account by describing their effects
with simple mathematical models.

The model gives a complete constitutive relation
(stress—strain or stress—crack width curve), which can
further be used in finite element analyses. The pro-
posed model is compared with experimental results
found in the literature. The effects of fibre aspect ratio
are also studied.

2. Macromechanical tensile behaviour
From the micromechanical properties it is possible to
derive a model of a single fibre bridging one or several
cracks [1, 2]. However, the result of a single-fibre
analysis is not very practical for material design. It can
be useful when studying the interaction between fibre
and matrix, but usually the macromechanical proper-
ties are of greater interest. Moreover, the inclined
fibres introduce additional phenomena, e.g. the num-
ber of fibres bridging the crack, pulley effect, and
matrix spalling, which considerably affect the macro-
mechanical behaviour. The macromechanical tensile
behaviour can be derived by taking all fibres and their
distribution into account. Only by means of a statist-
ical analysis can the crack spacing, crack width, post-
cracking strength, and the ultimate strain be evalu-
ated. Moreover, the behaviour of a hybrid composite
is only possible by statistical analysis, because all fibre
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types must be considered for evaluation of the com-
posite stress and when testing the condition of sub-
sequent cracking.

Because non-linear behaviour is mainly due to
cracking and the behaviour thereafter, the cracked
stage is emphasized in this study. The composite is
assumed to behave in linear elastic mode, up to the
first crack strength. The elastic modulus of the un-
cracked composite is calculated using the rule of mix-
tures. Fibre length and orientation can be taken into
account by efficiency factors.

Beyond the elastic limit, the crack is assumed to
extend over the composite cross-section or, in finite
element analysis, over the volume controlled by an
integration point. Hence the crack is resisted only by
the bridging fibres. The first crack strength is defined
as the applied tensile stress at which the crack spreads
throughout a cross-section. It depends on the fibre
diameter, the fibre volume content, the moduli of
the constituents, and the fracture energy of the matrix.
Aveston et al. [3] derived the cracking strain of
composites with continuous, aligned fibres. Li and
Leung [4] stated the conditions for steady-state
cracking and derived the first crack strength for dis-
continuous random fibre composites. Multiple crack-
ing then takes place if the fibres are able to sustain
a stress higher than the first crack strength. The
matrix divides into segments, the length of which
depends on the stress transfer from the fibres to the
matrix. Cracking is observed to happen at a nearly
constant stress. After the multiple cracking process, no
further cracks form, and the composite shows strain-
hardening behaviour until the fibres rupture or pull
out.

2.1. Model requirements
The following requirements are set for the new consti-
tutive model.

1. The composite may fail either in single fracture
or in multiple cracking mode.

2. No restriction of fibre length is imposed.
3. No restriction of fibre volume content is im-

posed.
4. No restriction of fibre orientation is imposed.
5. Full bond, gradual debonding, and frictional

bond are taken into account.
6. Fibres can pull out, break, or yield.
7. The composite may include several types of fibre

(hybrid composite).
8. The result should include the stress—strain curve,

the stress—crack width curve, and a prediction of crack
spacing.

Conditions 2 and 3 may cause numerical problems,
if the fibre length or the volume content is high.
Moreover, the single-fibre analysis may lead to inac-
curate results with very high fibre contents [1]. With-
out these limitations, the theory does not violate those
conditions. For continuous fibres the model was
slightly modified to assume equal forces in the fibre at
the cracks. With the modified theory, however, fibre
pull-out cannot be modelled nor the contribution of
beaten fibres taken into account.



2.2. Assumptions
The following assumptions for the model are adopted.

1. Fibres are separate, straight and smooth.
2. Fibres are fully flexible in bending.
3. Both the fibres and the bulk matrix behave in

linear elastic fashion up to their tensile strength.
4. The constitutive behaviour of the interface at the

different stages is as follows.
(i) A linear relationship between the interface shear

stress and the relative displacement of the fibre and
the matrix in a full bond stage.

(ii) Debonding once the interfacial shear stress ex-
ceeds a threshold value.

(iii) Constant or decaying frictional shear stress
along the debonded length.

5. Matrix cracks are planar and perpendicular to
the load.

6. Matrix cracks form if the average stress in the
matrix halfway between cracks exceeds the matrix
cracking strength.

7. Several cracks form simultaneously, dividing the
crack spacing in half.

8. Matrix spalling at the fibre exit from the matrix
at an oblique angle is considered geometrically from
a predefined spalled length.

9. Residual stresses caused by thermal or other
mismatches are neglected.

Assumption 1 restricts the use of the model to
straight and smooth fibres. However, fibres with a sur-
face treatment or hooked ends are widely used be-
cause of their better anchorage. The model does not
take their different mechanisms into account. The
increased pull-out energy can be taken into account
by changing the interfacial properties, which only ap-
proximates the true pull-out curve. The enhanced
properties of the deformed fibres have been studied
experimentally by Naaman and Najm [5] and theor-
etically by Chanvillard [6].

Assumption 2 means that the fibre acts like a rope,
carrying only uniaxial stresses. No bending or shear
stresses are taken into account. If the fibre aspect ratio
is high, the assumption is justified. Leung and Li [7]
studied numerically the fibre bending and matrix
spalling mechanism, treating the fibre as a beam on an
elastic foundation. The spalling criterion was also
derived from the finite element analysis. However,
because the bending energy is neglected in the present
study, possible fibre breakage due to bending or shear-
ing is not taken into account. Moreover, the spalling
condition is not included but its effect can be taken
into account if the spalled length is known (Assump-
tion 8).

Fibre rupture or yielding and matrix cracking are
considered the main causes of non-linear behaviour of
the constituents. Therefore, the behaviour can be
treated as linear elastic, up to a certain stress. How-
ever, some fibres may undergo extensive yielding prior
to fibre rupture, e.g. polypropylene networks [8]. In
that case, the model should be used with caution. The
interfacial behaviour is elastic due to full bond until
the interfacial shear strength is exceeded and debon-
ding begins. Debonding may exhibit a gradual soften-
ing behaviour if the debonding energy, G

II
, is relatively
high [9]. Therefore, the interfacial frictional shear
stress can be a decaying function.

In this study, only macrocracks are studied. Experi-
ments have shown that the crack orientation is per-
pendicular to the tensile loading axis both in the case
of aligned fibres and fibres in a random three-dimen-
sional distribution ([10] Fig. 11). However, the as-
sumption may not be valid in the case of fibres lying at
a high angle to the loading, in which case the crack
plane may be deflected parallel to the fibre—matrix
interface [11].

In an average sense, the maximum stress in the
matrix occurs halfway between the cracks. The stress
state is only checked in that position. However, in the
case of a high fibre inclination, a local stress at the
fibre bending point may be high enough to cause
matrix splitting. The condition of matrix spalling is
a topic for future study.

Equal crack spacings and simultaneous formation
of several cracks (Assumption 7) are merely to reduce
the computational time. This assumption does not
restrict the validity of the model. In the multiple crack-
ing process, consider cracks to form one at a time. The
load drops but reaches the cracking stress again, caus-
ing the subsequent crack to form. This process con-
tinues until the composite is divided into segments of
equal length. The crack spacing predicted is not
unique but falls somewhere between x@ and 2x@, where
x@ is the minimum crack spacing [3]. To obtain the
minimum crack spacing, an iterative computation
would be needed.

The residual stresses may be important, because
they affect the cracking stress [12]. Moreover, they
have a strong influence on inelastic strains and hyster-
esis [13]. Hsueh [14] showed that the axial residual
stress strongly affects the fibre force required to de-
bond the interface. Fibre sliding due to residual stres-
ses was studied by Hsueh [15]. The methods for
derivation of residual stress from experiments were
suggested by Hsueh [16] and Hild et al. [13]. In order
to include residual stresses, the theory in Part I [1]
should be refined.

2.3. Fibre orientation
In Part I of this study [1], crack bridging by a single
fibre was studied assuming the fibre to be located
perpendicular to the crack. However, the fibres may
be randomly distributed within the matrix, or may
favour certain angles. If the assumption of flexible
fibres in bending is made, the theory of aligned fibres
can be used with minor modifications.

The effects of fibre inclination have been studied
both experimentally, e.g. by Ouyang et al. [17] and
Bartos and Duris [18], and theoretically, e.g. by Li
[19], Stroven [20], and Jain and Wetherhold [21].
Bartos and Duris studied the effect of matrix spalling
on the pull-out curve of inclined fibres. In most theor-
etical studies, the fibre position at the crack is assumed
to be perpendicular to the crack faces. This is justified
unless matrix spalling takes place, which allows the
inclined position of the fibre at the crack [18]. The
effect of matrix spalling is studied in the next section.
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In the present section, matrix spalling is neglected for
illustrative reasons. The main assumption concerning
the fibre orientation throughout this study is that the
fibre is completely flexible in bending, carrying only
tensile stress.

The fibre orientation factor for the evaluation of
composite stress can be derived for a single fracture
mode, or if the crack spacing is higher than the fibre
length. However, if the crack spacing is less than the
fibre length, the fibre inclination leads to a change in
the geometry because the crack spacing in the direc-
tion of an inclined fibre is

l"
2s

cos h
(1)

where 2s is the crack spacing, and h is the inclination
angle between the fibre and the direction normal to
the crack.

Wang et al. [22] derived the fibre orientation factor
gh , using the probability for a fibre to intercept the
crack plane as a function of h. For a random three-
dimensional distribution, the factor was determined to
be gh"1/2. Kullaa [23] extended the analysis to
a subspace with the fibre inclination angle between
h
1

and h
2
. Moreover, separate formulae were derived

for two- and three-dimensional subspaces. The results
agree with the literature, resulting in factors of
gh"1/2 and gh"2/p for random three- and two-
dimensional distributions, respectively, as well as
gh"cos h for parallel fibres.

As suggested by Li [4], the increased pull-out load
of inclined fibres can be taken into account by model-
ling the fibre bending point as a pulley, with a snub-
bing friction coefficient, l

r
&
"r@

&
elh (2)

where r@
&
is the tensile stress in the inclined fibre inside

the matrix, and r
&
the tensile stress in the fibre at the

crack (see Fig. 1a). The average fibre stress can be
obtained by integration

r
&
"

1

A

2

l
&
P

l&@2

0
CP

A

r@
&
(l, h) elhcos h dAD dl (3)

where A depends on the fibre distribution (see the
Appendix).
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The average matrix force perpendicular to the crack
transferred along the fibre length is

¹M "
1

A

2

l
&
P

s`l&@2

s
CP

A

¹(l, h) cos2 hdAD dl (4)

where ¹ is the matrix force in the fibre direction and
refers either to a force at a certain location or the
average force within the matrix segment. In addition
to Equation 4, an additional force is transferred at the
fibre bending point (Fig. 1a). The average of this
additional force is
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2

l
&
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(5)

where P is the force in the inclined fibre at the crack. It
should be noted that the direction of the additional
force is perpendicular to the crack plane. Hence it is
not transferred to the area A

.
around the inclined

fibre, but rather as an external force to the composite.
Therefore, it is assumed that the matrix proportion of
the force is

¹
!69

"

Q!1

Q
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!69
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where Q"1#A
.
E
.
/A

&
E
&
.

2.4. Matrix spalling
Matrix spalling may occur due to local stresses at the
fibre bending point. If spalling occurs, it affects the
inclined position of the fibre at the crack. Therefore,
the fibre force component perpendicular to the crack
is lower than that without matrix spalling (see Fig. 1).
Moreover, the risk of fibre rupture due to bending
decreases as the bending angle at the exit point de-
creases. On the other hand, the crack width and hence
the strain become higher because of the altered geo-
metry (see Fig. 2).

Let the crack width be w and the spalled length
l
41

(Fig. 2). Owing to matrix spalling, the crack width
consists of two components, one due to the fibre
inclination, or the geometric change, and the other
due to the pull-out. Let the pull-out component be w

41
.

It is always less or equal to that without matrix
Figure 1 Forces at the crack due to fibre inclination and matrix spalling. (a) No matrix spalling, (b) matrix spalling included.



Figure 2 Geometry of a fibre bridging a crack at an oblique angle
due to matrix spalling.

spalling and can be calculated by

w
41
"2M[(1

2
w#l

41
cos h)2#(l

41
sin h)2]1@2!l

41
N (7)

The fibre orientation at the crack is

u"arctan
l
41

sin h

w/2#l
41

cos h
(8)

The spalled length is still to be determined. Leung and
Li [24] studied the coupled fibre bending/matrix
spalling mechanism using the finite element method.
They concluded that the spalled length depends on the
fibre angle and the crack width. Within the crack-
width region of their study, the relationship between
the spalled length and the crack width was nearly
linear. The dependence on the fibre angle was not too
pronounced. Therefore, it would be justified to use
a simple relationship for the spalled length

l
41
"kw (9)

where the coefficient k is to be determined from experi-
ments or finite element analyses. For fixed fibre inclina-
tion, h, Relationship 9 leads to a constant fibre angle
u at the crack, independent of the crack width. This
may not be realistic, at least at high crack widths,
because the angle u probably decreases with an increas-
ing crack width. The slopes k in Leung and Li’s study
[24] were seen to decrease with increasing crack width,
and may possibly have reached a limit at higher crack
widths. Therefore, another simple model with a constant
spalled length would be more realistic, at least at higher
crack widths. A criterion for matrix spalling and an
estimation of the spalled length are yet to be developed.

When the fibre inclination u is known, the force
components for the composite analysis can be evalu-
ated and are shown in Fig. 1b. It should be remem-
bered that the fibres are assumed to carry tensile loads
only. Taking matrix spalling into account, the com-
posite stress and the additional force at the bending
point (cf. Equations 3 and 5, respectively) become

r
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2

l
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!cos h) cos h dAD dl (11)
Equations 10 and 11 take into account the fibre distri-
bution, the pulley effect, and matrix spalling. It can be
seen that the pulley effect increases the fibre stress,
while matrix spalling has the opposite effect.

2.5. Crack localization
Beyond peak stress in multiply-cracked composites,
the stress decreases causing strain-softening, or crack
localization. This means that one crack opens while
the others close. In this process two constitutive rela-
tions can be distinguished, the stress—strain curve and
the stress—crack width curve. The former consists of
the crack widths equal to all of the closing cracks as
well as the strain in the matrix. The latter consists of
the additional crack width of the opening crack. In
finite element analysis, these two constitutive relations
should be distinguished.

The analysis is as follows. It is assumed that a cer-
tain proportion of the crack width is permanent. The
width of the opening crack is increased gradually
while the others are closing. Aveston et al. [3] derived
a value for the permanent strain after unloading. Hild
et al. [13] studied unloading and the corresponding
hysteresis up to the strain where debonding extends
through the matrix segment. Beyond that point, their
theory is not valid. A more robust model for crack
localization and unloading is still to be developed,
which would result in the theoretical permanent crack
opening, without the need to predefine it. The present
model is presumed to be accurate enough for the
purposes mentioned earlier.

2.6. Hybrid composite
Very few models for hybrid composites are available.
Kakemi and Hannant [8] developed a mathematical
model for a hybrid composite with two types of con-
tinuous aligned fibres and a pure frictional bond. In
the following, a theory is developed which can include
more than two types of fibre, all of which may have
different properties and distribution.

To obtain the matrix area occupied by a single fibre
of type i, let us examine a representative volume ele-
ment of the composite with n different fibre types.
Assume the fibres to be aligned, and study the cross-
sectional area A

#
of the element. The total fibre vol-

ume content is

»
&
"

n
+
i/1

»*
&
"

1

A
#

n
+
i/1

NiAi
&
"

»
.

A
.

n
+
i/1

NiAi
&

(12)

where Ni is the number of fibres of type i. A
.

is the
total matrix area within A

#
, and can be derived

from 12

A
.
"

»
.

»
&

n
+
i/1

NiAi
&

(13)

On the other hand, if Ai
.

is the matrix area occupied
by a single fibre of type i, the total matrix area can be
written as

A
.
"

n
+
i/1

NiAi
.

(14)
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Combining Equations 13 and 14, and recognizing that
Ni can be arbitrary, leads to

Ai
.
"

»
.

»
&

Ai
&

(15)

To compute for the tensile stress in the matrix due to
the force transferred from fibres of type i, the force
must be divided by a total matrix area A

.
. From

Equation 12 and the fact that Ni can be arbitrary, the
total matrix area is

A
.
"

»
.

»i
&

NiAi
&

(16)

On the other hand, when analysing one fibre type at
a time, the force from a fibre is transferred to a matrix
area AK i

.
, and the area A

.
can be written as

A
.
"NiAK i

.
(17)

Finally, combining Equations 16 and 17, the matrix
area for a single fibre of type i for matrix stress calcu-
lation is

AK i
.
"

»
.

»i
&

Ai
&

(18)

The areas Ai
.

and AK i
.

in Equations 15 and 18 are
mutually equal if a single fibre type is analysed.

2.7. Stress and strain
The final step from a single fibre analysis to the com-
posite constitutive relationship is to compute the
stresses and strains. The composite stress can be ob-
tained from the stresses in the fibres at the crack by

r
#
"

n
+
*/1

»i
&
ri
&

(19)

where ri
&
is given by Equation 3. The composite strain

during the strain hardening in the multiply-cracked
stage is

e
#
"e

.
#

w

2s
"

n
+
*/1

1

AK i
.
E
.
C¹i(x)#¹i

!69D#
w

2s
(20)

To check for matrix cracking, the average matrix
strain at the middle of the segment is obtained by

multiplying e
.

by E
.

r
.
(s)"

n
+
i/1

1

AK i
.
C¹i(s)#¹i

!69D (21)

It should be noted that the aggregate bridging stress,
r!
.

[25], is not taken into account. It can be simply
included by summing an additional term »

.
r!
.

to the
stress in Equation 19 and a term »

.
r!
.
/E

.
to the

composite strain in Equation 20. Strictly speaking, the
additional stress causes different boundary conditions
in the fibre analysis at the cracks [1]. The effect of
aggregate bridging occurs only with low crack widths.
Therefore, its influence on the total stress—strain curve
is negligible at higher strains.
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2.8. Calculation procedure
Computation of the constitutive relationship is per-
formed according to the following algorithm. The
starting point for the calculation is a large crack spac-
ing and zero crack width. The crack width is gradually
increased. At every crack width, the crack bridging
analysis [1] is performed separately for all fibre types,
fibre locations and orientations. The average fibre and
matrix stresses are evaluated, and the matrix cracking
criterion tested. If cracking takes place, the crack
spacing is halved, and the calculation is started from
the beginning at zero strain. Finally, the composite
stress and strain are evaluated.

If the fibre length is much greater than the crack
spacing, the computational time may become too
long, because the number of equations in fibre analysis
depend on the number of cracks bridged by a fibre,
which increases as the crack spacing decreases. The
fibre analysis is an iterative process, and is performed
for every fibre location and orientation. In some
examples, the integration was performed using 20 fibre
location and 10 fibre angles. In the other examples,
five fibre locations and angles were used.

3. Model verification
The proposed model was verified against the ACK
theory by Aveston, Cooper, and Kelly [3, 26] and was
seen to agree with it [27]. The ACK theory was
originally developed for continuous, aligned fibres,
but was later extended to evaluate the peak stress and
the crack spacing of discontinuous and randomly
oriented fibre composites. However, the fibre pull-out
cannot be modelled with the theory, and moreover the
analysis of hybrid composites is not included. There-
fore, the proposed model can be considered as an
extension of the ACK model.

In an internal report [27], parametric calculations
were performed to study the effects of different mi-
cromechanical parameters on the constitutive rela-
tionship. The parameters include the stiffness ratio of
the fibre and the matrix, the fibre volume content, the
fibre aspect ratio, the frictional shear stress, and the
fibre orientation. The present paper studies the effect
of fibre diameter.

Unfortunately, few experimental results are avail-
able for tensile specimens, which include discontinu-
ous randomly oriented fibres, and which fail in the
multiple cracking mode. The verification is made
against an ECC material consisting of discontinuous
polyethylene fibres, the failing mode being fibre pull-
out.

The validity of the proposed model for analysing
hybrid composites was also studied by Kullaa [27]
compared with the experimental results by Kakemi
and Hannant [8] and Xu and Hannant [28].

3.1. Effects of fibre diameter
The effect of fibre diameter is studied using the values
d"1.0, 0.5, 0.25, and 0.1mm, and fibre aspect ratios
l
&
/d"40, 80, 160, and 400, respectively. The bond



Figure 3 Computed constitutive relations for different fibre dia-
meters d: (——) 0.1 mm, (— — —) 0.25 mm, (— - —) 0.5 m, (— ——) 1 mm.

modulus, j, is inversely proportional to the fibre
diameter [29], leading to values of j"1.24]1013,
2.48]1013, 4.96]1013, and 1.24]1014Nm~3, re-
spectively. The other micromechanical parameters
are: for the matrix, modulus of elasticity E

.
"21GPa,

and cracking stress r
.6

"5MPa; for fibres, modulus
of elasticity E

&
"210GPa, volume fraction »

&
"5%,

length l
&
"40mm, and tensile strength r

&6
"

1000MPa; for the interface, shear strength s
6
"

4.0MPa, and frictional shear stress s
&
"3.0MPa.

Fibres are distributed in a random three-dimensional
array.

The stress—strain relationships are shown in Fig. 3.
Composites with the two lowest aspect ratios fail with
a single fracture mode. A characteristic length of
40mm is chosen for plotting the strains. Composites
with an aspect ratio larger than 400 fail in fibre rup-
ture, all having equal post-cracking stiffnesses and
strengths. Therefore, a further increase of the aspect
ratio does not change the stress—strain relation. On
the other hand, the crack spacing and crack width
halve as the fibre aspect ratio doubles. Further crack-
ing is predicted also at higher stresses, due to addi-
tional stresses at fibre bending points. The highest
possible strength is achieved with a high fibre aspect
ratio, but the ductility becomes low because of fibre
rupture. An intermediate fibre aspect ratio is seen to
lead to multiple cracking, as well as to high ductility
and strength. This can be seen with a fibre aspect ratio
of 160, resulting in a fibre pull-out failure mode.
Therefore, the strain capacity is higher than that with
an aspect ratio of 400 or more.

3.2. Engineered cementitious composite
Maalej and Li [30] studied a new strain-hardening
material, called an engineered cementitious composite
(ECC) with randomly oriented discontinuous poly-
ethylene fibres. The material properties used in calcu-
lations are: for the matrix, modulus of elasticity
E
.
"21GPa, and cracking stress r

.6
"2.5GPa; for

fibres, modulus of elasticity E
&
"120GPa, volume

fraction »
&
"2%, diameter d"0.038mm, length

l
&
"12.7mm, and tensile strength r

&6
"2700 MPa;
Figure 5 Computed stress—strain curves for ECC (— — —) Martix
spalling not included, () ) ) )) spalled length l

41
"0.5w, (——)

l
41
"0.001 mm.

Figure 4 Experimental stress—strain curve for ECC [31].

for the interface, shear strength s
6
"2.0MPa, fric-

tional shear stress q
&
"0.85MPa, and frictional snub-

bing coefficient l"0.7.
The ultimate strain of the composite was seen to be

as high as 5.5%, which is higher than the fracture
strain of the fibre. To achieve such a high strain, some
strain must be formed without stretching the fibres.
This is possible if the matrix spalls at the fibre exit
point. Two models for the matrix spalling length are
compared, l

41
"kw, where k is chosen to be 0.5, and

l
41
"0.001mm.
The experimental stress—strain curve is shown in

Fig. 4. The computed curves are shown in Fig. 5. It can
be seen that without modelling the matrix spalling, the
ultimate strain is approximated too low. From the two
models of matrix spalling, the constant spalled length
seems to give results which are closer to the experi-
mental curve at higher strains, while the linearly in-
creasing spalled length agrees better with the
experiments at low strains. This observation supports
the discussion in Section 2.4. It should be noted, how-
ever, that matrix spalling is not reported in the cited
study by Maalej and Li [30], although its existence
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can be deduced from a tension-softening curve in the
earlier study by Ward and Li [32].

Because of snubbing, high forces are transferred
into the matrix, and the crack spacing and the crack
width tend to be very low. The computed crack spac-
ing is less than 0.4mm and the maximum crack width
is 0.017mm. Further cracking was not allowed, as this
would have produced too many equations. However,
the crack spacing of 0.4mm is probably not realistic. If
the crack spacing is lower, the spalled length of the
matrix should be increased to obtain a high composite
strain. For example, with a crack spacing of 1.6mm,
a spalled length of 0.006mm leads to a strain of 6%
and a crack width of 0.1mm. A relatively high spalled
length (l

41
"0.07mm) results in a more realistic crack

spacing of 3.2mm ( [10], Fig. 11). Matrix spalling is
more pronounced at high fibre angles. However, its
dependence on the fibre angle is not taken into ac-
count in this study.

It is concluded that the behaviour of an ECC
material can be reproduced from the micromechanical
properties. The modelling of matrix spalling is
essential for obtaining high strains and a realistic
crack spacing as observed in experiments. The condi-
tion of matrix spalling is not included in the model,
but the spalled length can be entered. A spalled length
of only a fraction of the crack spacing increases con-
siderably the strain capacity of the composite.

4. Conclusion
A statistical micromechanical model of multiple
cracking is developed in which the statistical para-
meters are fibre orientation and fibre location. For
every location and orientation, a fibre analysis is per-
formed based on a two-fibre theory. The results of
a fibre analysis include the fibre stress at the crack and
the force in the matrix. These values are then averaged
to obtain the stress and strain in the composite. In
addition, the average matrix stress is evaluated for
testing the cracking criterion.

Analysing fibres parallel to the loading is quite
simple because of the few micromechanical para-
meters involved. Only the properties of the interface
cannot be directly measured. Fibre orientation intro-
duces additional micromechanical parameters which
cannot be measured from a pull-out test of an aligned
fibre. Such parameters include the snubbing frictional
coefficient and the spalled length of the matrix, and
a systematic experimental procedure is needed to
measure them. The pulley effect increases the com-
posite stress, whereas matrix spalling has the opposite
effect. Moreover, the strain capacity of composites
with randomly distributed fibres is considerably en-
hanced due to matrix spalling.

The constitutive relationships of fibre-reinforced
brittle materials under uniaxial tensile load can be
used as such to evaluate the tensile strength, crack
width, crack spacing, or ultimate strain of the com-
posite. Moreover, the effects of different material para-
meters can be studied by varying one parameter at
a time and comparing the results. Hence the model
is useful to a structural engineer as well as to a mat-
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erial designer. The derived constitutive relationships
— either stress—strain, or stress—crack width curves —
will later be used in numerical analyses to represent
the behaviour normal to the crack. The smeared and
discrete crack models make it possible to extend the
present one-dimensional constitutive model to two
and three dimensions. This will be the subject of future
work.

Appendix. Fibres oriented in different
subspaces
The following analysis is similar to that outlined by
Kullaa [23], except for the additional snubbing term.
The average fibre stress at the crack for a uniform
distribution in a three-dimensional subspace between
the angles h

1
and h

2
is

r
&
"

1

cos h
1
!cos h

2

2

l
&
P

l&@2

0

]CP
h2

h1

r@
f
(l, h) elh sin h cos hdhDdl (A1)

If r@
&

depends only on the fibre embedded length, as
assumed in a single fracture mode, the integration in
Equation A1 can be evaluated, leading to

r
&
"gh

2

l
&
P

l&@2

0

r@
f
(l) dl (A2)

where

gh"

elh2(l sin 2h
2
!2 cos 2h

2
)!ek hÇ(l sin 2h

1
!2 cos 2h

1
)

2(4#l2) (cos h
1
!cos h

2
)

(A3)

For a random uniform distribution (h
1
"0, h

2
"p/2),

Equation A3 gives

gh"
1#elp@2

4#l2
(A4)

which is found to be twice the value of the snubbing
factor g defined by Li [19]. Further, if the snubbing
friction is zero, the orientation factor becomes
gh"1/2. For an arbitrary three-dimensional fibre dis-
tribution, with zero snubbing friction the orientation
factor becomes

gh"
sin2 h

2
!sin2 h

1
2(cos h

1
!cos h

2
)

(A5)

which is equal to that derived by Kullaa [23]. If the
fibres are parallel at an angle h, the orientation factor
is derived by L’Hôpital’s rule, leading to

gh"elh cos h (A6)

In a two-dimensional case, the average stress in the
fibre is [23]

r
&
"

1

h
2
!h

1

2

l
&
P

l&@2

0
CP

h2

h1

r@
&
(l, h) elh cos h dhDdl (A7)



Figure A1 Fibre distribution in a three-dimensional subspace
between angles h

1
and h

2
. l is the fibre embedded length.

If r @
&

depends only on the fibre embedded length, the
integration in Equation A7 becomes Equation A2,
with

gh"
elh

È(l cos h
2
#sin h

2
)!elh

Ç(l cos h
1
#sin h

1
)

(1#l2) (h
2
!h

1
)

(A8)

For a random uniform two-dimensional distribution
(h

1
"0, h

2
"p/2), Equation A8 gives

gh"
2(elp/2

!l)

p (1#l2)
(A9)

Further, if the snubbing friction is zero, the orienta-
tion factor becomes gh"2/p. For an arbitrary two-
dimensional fibre distribution, with zero snubbing
friction the orientation factor becomes

gh"
sin h

2
!sin h

1
h
2
!h

1

(A10)

which is equal to that derived by Kullaa [23]. If the
fibres are parallel at an angle h, the orientation factor
is derived by L’Hôpital’s rule, leading to Equation A6.

However, the three-dimensional formulae are only
valid for distributions symmetrical to the crack plane.
For a more general fibre distribution, it is assumed
that the fibre ends are distributed over a segment of
a sphere (Fig. A1). The segment is at an angle a from
the crack plane. The probabilistic density is [22]

p (h)"
1

A

dA

dh
(A11)

where A is the surface area of the hemisphere with
radius l, l being the fibre embedded length. In this case
the analysis leads to

A"2pl2 [1!cos 1
2

(h
2
!h

1
)] (A12)

dA"ul2 sin h dh (A13)

where u can be derived from the following equations

cos
u
2
"1!

h/sina
l sin h

(A14)

h"min [l cos(h!a)!y
4
, 2 l sin h] (A15)

y
4
"l cos 1

2
(h

2
!h

1
) (A16)

Finally, the average fibre stress can be obtained from
Equation 3, which must now be integrated numer-
ically.
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